Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 58(6): 2284-2291, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33999150

RESUMO

Aedes albopictus is the vector of arbovirus diseases including yellow fever, dengue, Zika virus, and chikungunya fever, and it poses an enormous threat to human health worldwide. Previous studies have revealed that haedoxan A (HA), which is an insecticidal sesquilignan from Phryma leptostachya L., is a highly effective natural insecticide for managing mosquitoes and houseflies; however, the mechanisms underlying the response of Ae. albopictus after treatment with sublethal concentrations of HA is not clear. Here, high-throughput sequencing was used to analyze the gene expression changes in Ae. albopictus larvae after treatment with the LC30 of HA. In total, 416 differentially expressed genes (DEGs) were identified, including 328 upregulated genes and 88 downregulated genes. Identification and verification of related DEGs were performed by RT-qPCR. The results showed that two P450 unigenes (CYP4C21 and CYP304A1), one carboxylesterase, and one ABC transporter (ABCG1) were induced by HA, which indicated that these detoxifying enzyme genes might play a major role in the metabolic and detoxification processes of HA. Additionally, acetylcholine receptor subunit ɑ2 (AChRα2), AChRα5, AChRα9, and the glutamate receptor ionotropic kainate 2 (GRIK2) were found to be upregulated in HA-treated larvae, suggesting that HA affected the conduction of action potentials and synaptic transmission by disrupting the function of neural receptors. These results provide a foundation for further elucidating the target of HA and the mechanism of detoxification metabolism in Ae. albopictus.


Assuntos
Aedes/genética , Benzodioxóis/efeitos adversos , Inseticidas/efeitos adversos , Lignanas/efeitos adversos , Transcriptoma/efeitos dos fármacos , Aedes/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica , Larva/efeitos dos fármacos , Larva/genética
2.
Molecules ; 24(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121976

RESUMO

A new lignan (T4) and three known lignans (T1, T2, and T3) were isolated from the methanol extract of the roots of Phryma leptostachya using bioassay-guided method, and their structures were identified as phrymarolin I (T1), II (T2), haedoxan A (T3), and methyl 4-((6a-acetoxy-4-(6-methoxybenzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan-1-yl)oxy)-1-hydroxy-2,2-dimethoxy-5-oxocyclopent-3-ene-1-carboxylate (T4) byNMR and ESI-MS spectral data. Bioassay results revealed that haedoxan A exhibited remarkably high insecticidal activity against Mythimna separata with a stomach toxicity LC50 value of 17.06 mg/L and a topical toxicity LC50 value of 1123.14 mg/L at 24 h, respectively. Phrymarolin I and compound T4 also showed some stomach toxicity against M. separata with KD50 values of 3450.21 mg/L at 4 h and 2807.10 mg/L at 8 h, respectively. In addition, phrymarolin I and haedoxan A exhibited some stomach toxicity against Plutella xylostella with an LC50 value of 1432.05 and 857.28 mg/L at 48 h, respectively. In conclusion, this study demonstrated that lignans from P. leptostachya are promising as a novel class of insecticides or insecticide lead compounds for developing botanical pesticides.


Assuntos
Inseticidas/isolamento & purificação , Lamiales/química , Lignanas/isolamento & purificação , Animais , Benzodioxóis/química , Benzodioxóis/isolamento & purificação , Benzodioxóis/farmacologia , Brassica/parasitologia , Inseticidas/química , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Triticum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...